

Chief, Test & Integration Division, Project Management Office, Aviation Electronic Systems, Redstone Arsenal, AL

ATIRCM/CMWS

A system designed to provide aircraft defensive countermeasures, subject to crew override, for defeating incoming heat-seeking missile threats to USA attack, utility, cargo, and special operations aircraft.

ATIRCM/CMWS OVERVIEW

SYSTEM ASSESSMENT TIMELINE

CY00 CY01 CY02

PROGRAM OBJECTIVES

- Calculate an estimated system False Alarm Rate (FAR)
- Determine the system Probability of Detection (P_D)
- Determine the system Probability of Countermeasure (P_{CM})
- Provide data to support a System Assessment (SA) for system effectiveness, suitability, and survivability

TOOLS

OPEN AIR RANGE (OAR) OBJECTIVES

- Measure system performance against Critical Technical Parameters by determining what Potential False Alarm Sources (PFAS), if any, produce false alarms.
- Collect PFAS signature data for input to the E2E Model and development of system algorithms.
- Provide data for a System Assessment on:
 - × The ability of the system to detect, declare and effectively counter an unrestrained missile launched at it, using selected Threat missiles. [65 missiles in three test events - Aerial Cable Range (2), QF-4 Drone missile firings]
 - × The system's ability to defeat threat missiles, and to determine system response during multiple-aircraft scenarios. [Captive Seeker Test]
 - × The ability of the system to detect, track, and direct energy onto a path-constrained, surrogate missile. [Sled Test]
- Verify compliance with selected system specifications and provide data for development and validation of the E2E Model.
- Evaluate the operational effectiveness and suitability of the system on the the lead system platform.

OPEN AIR RANGES (OAR)

E2E SIMULATION

END-TO-END (E2E) OBJECTIVES

- Evaluate system performance against Critical Technical Parameters in support of pre-test planning and post-test evaluation.
- Supplement cases where ground or flight testing may be inadequate, impractical, or impossible.
- Support test planning and reduce risk through pre-test prediction of system performance.
- Aid in post-test resolution of anomalies.
- Provide M&S data as required in support of Hardware-in-the-Loop, Missile Simulator, and System Integration Laboratory test activities.

E2E MODEL ARCHITECTURE SUPPLEMENTS LIVE FIRE TESTING

• 2.5 Million Lines of Code

TEST TOOLS & INSTRUMENTATION

- TSPI
 - × Aircraft INS
 - × Missile TM kits, laser TM
- Atmospherics
 - × Ozone particle counter
 - × MET instrumentation
- Platform & System Performance Recording
 - X Test Instrumentation Package (TIP)

- Signature measurement (Missiles, PFAS)
 - × UV and IR radiometers
 - × UV Spectrometer
- Missile Simulator
 - × Super Multi-role Electro Optical Stimulator (SMEOS)
- Live Run Replay
 - × System Integration Lab (SIL)
- Video

Above instrumentation can be applied to other programs as appropriate

SUPER MULTI-ROLE ELECTRO-OPTICAL STIMULATOR (SMEOS)

- Portable, ground-based test set for Ultraviolet and Infrared warning and defense systems
- Simulates the UV/IR signature of the launch and approach of a missile
 - × Independently Programmable UV and IR channels
 - × Main Unit and Beacon Boost Module (BBM) can operate independently
- Data Acquisition Unit (DAU)
 - × Control of system functions
 - × Collect and store data signals
 - × Remote operation capability

•IR Radiometer - User selectable MGC/AGC

Witness sensor monitoring UV channel

SUPER MEOS

Synthesized witness sensor for multiple lamp

engagement

SUPER MEOS

SYSTEM INTEGRATION LABORATORY (SIL) - OBJECTIVES

- Evaluate system performance against Critical Technical Parameters in a simulated operational environment.
- Evaluate system performance against selected Threat missiles and PFASs, using a TRADOC-approved Threat laydown.
- Reconcile the results of SIL simulations with alldigital simulations where appropriate.

SYSTEMS INTEGRATION LAB (SIL)

ELECTRONIC

CONTROL UNIT (ECU)

Capabilities

Enables real-time functioning of system algorithms hosted in the actual Electronic Control Unit (ECU) hardware with Operational Flight Program (OFP).

- Primary inputs are sensor output, host aircraft INS data, and ECU gyroscope outputs recorded during flight test.
- SIL recorded output is real-time Ethernet and 1553 message traffic; used for assessment of system declaration performance.

Applications

- × Performance predictions for flight test planning.
- × Performance assessment to extend test. conditions beyond those realizable in flight test.
- Regression testing of ECU modifications (hardware and software) using TIP data from flight test.
- × Correlation Tool with E2E and HITL

TEST INSTRUMENTATION PACKAGE (TIP)

SPECIALIZED UV/IR RADIOMETER SUITES

- Built for Signature Characterization
 - × Missiles
 - Potential false alarm sources (PFAS)
 - × Missile simulators (MEOS)
- 4 UV/IR Radiometer Suites
 - × System bandpasses
 - × Time-correlated UV and IR
 - Remote operation and data transfer
 - × 1-2kHz sample rate
 - × IR responsivity
 - \downarrow High gain ~ 3.55e-7 (w/cm²/v)
 - $\downarrow \text{Low gain} \sim 9.00e-5 (\text{w/cm}^2/\text{v})$
 - × IR Filter Transmission
 - \downarrow ND1-A1 = 10^{-0.99}
 - \downarrow ND2-A1 = 10^{-1.99}
 - \downarrow ND3-A1 = 10^{-2.91}
 - × Data collection for up to 15 min

UV RADIOMETER

LRAD-II Optical/Mechanical Design Overview – Side view

View of Optical Train

Appearance of Front-End Optical Assembly

UV/IR Suite

GENERAL OPERATIONAL SETUP DIAGRAM FOR UV/IR RADIOMETER SUITE

QUICK-LOOK OF DATA

■ Real Time/Near Real Time

- × Ozone concentration
- × MET parameters
- × Most recent aerosol size distribution
- × UV/IR signature recording verification
- × SMEOS BBM output voltage

Short Turnaround

×	UV coefficients	(20 min.)
×	Common source measurements	(30 min.)
×	Corrected UV/IR irradiance over time	(1 hr.)

' Daily/24-hour

- × SMEOS UV/IR witness sensor comparisons
- × SMEOS received signal analysis

'1 Week

× UV/IR irradiance measurements converted on site from engineering units to source units

DATA ANALYSIS PROCESS AND FLOW

PFAS DATABASE GENERATION

- Process starts with validated source unit data
- Spectral shapes (or reasonable estimates) required along with source unit data

HARDWARE-IN-THE-LOOP (HITL)

- Determine uninstalled system performance (e.g., Line Replaceable Units/Weapons Replaceable Assemblies) against simulated threats by building a statistical database of performance parameters.
- Verify compliance with the system specification in high performance platform environments that cannot be open-air tested due to platform maneuver rate limitations and safety considerations.

HARDWARE-IN-THE-LOOP (HITL)

- System contractor's Jam Lab has been established as a HITL asset
 - × 3 sensors and ECU on rate table
 - \times Single moving projector
 - ↓ Direct view
 - ↓ Scene amplitudes, temporal profiles& motion
 - ↓ Scene shape not variable
 - × Multiple sources and scene shape effects testing transferred to SIL
 - × Scenes & rate table motion driven by E2E model
 - × Minimal integration risks

MILESTONE DECISION SUPPORT PROCESS

SUMMARY

- E2E Simulation has supplemented live tests with more than 3200 model runs.
- Several hundred SIL runs with recorded flight data will support a statistically significant FAR assessment.
- MEOS has successfully portrayed 5 missiles at simulated ranges from 2 to 5 kilometers, providing a reliable and cost effective missile simulator.
- HITL can provide the foundation for a national test asset.

THE RESULT IS A MORE ROBUST TEST PROGRAM, WITH SUBSTANTIALLY FEWER FIRINGS, AT A LESSER COST, AND AT LOWER RISK FOR FOLLOW-ON TESTS.